Unsupervised fuzzy pattern discovery in gene expression data
نویسندگان
چکیده
منابع مشابه
Pattern Discovery in Gene Expression Data
Microarray technology provides an opportunity to monitor mRNA levels of expression of thousands of genes simultaneously in a single experiment. The enormous amount of data produced by this high throughput approach presents a challenge for data analysis: to extract meaningful patterns, to evaluate its quality and to interpret the results. The most commonly used method of identifying such pattern...
متن کاملpattern recognition in maintenance data using methodologies data minitng (cade study isfahan regional power electric company)
فعالیت های نگهداری و تعمیرات اطلاعاتی را تولید می کند که می تواند در تعیین زمان های بیکاری و ارایه یک برنامه زمان بندی شده یا تعیین هشدارهای خرابی به پرسنل نگهداری و تعمیرات کمک کند. وقتی که مقدار داده های تولید شده زیاد باشند، فهم بین متغیرها بسیار مشکل می شوند. این پایان نامه به کاربردی از داده کاوی برای کاوش پایگاه های داده چندبعدی در حوزه نگهداری و تعمیرات، برای پیدا کردن خرابی هایی که موجب...
15 صفحه اولUnsupervised Pattern Discovery in Biosequences Using Aligned Pattern Clustering
Protein, RNA and DNA are made up of sequences of amino acids/nucleotides, which interact among themselves via binding. For example, (1) protein-DNA binding regulates gene transcription [1]; and (2) Protein-protein binding plays important roles in cell cycle control and signal transduction [2].The binding is maintained by either the direct participation or assistance of conserved short segments ...
متن کاملUnsupervised Pattern Discovery for Multimedia Sequences
Unsupervised Pattern Discovery for Multimedia Sequences Lexing Xie This thesis investigates the problem of discovering patterns from multimedia sequences. The problem is of interest as capturing and storing large amounts of multimedia data has become commonplace, yet our capability to process, interpret, and use these rich corpora has notably lagged behind. Patterns refer to the the recurrent a...
متن کاملAn unsupervised fuzzy ensemble algorithmic scheme for gene expression data analysis
Background: In recent years unsupervised ensemble clustering methods have been successfully applied to DNA microarray data analysis to improve the accuracy and the reliability of clustering results. Nevertheless, a major problem is represented by the fact that classes of functionally correlated examples (e.g. subclasses of diseases characterized at bio-molecular level) are not in general clearl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: BMC Bioinformatics
سال: 2011
ISSN: 1471-2105
DOI: 10.1186/1471-2105-12-s5-s5